
UNCLASSIFIED

AH 268 572
Reproduced

Inf. Uie

ARMED SERVICES TECHNICAL INFORMATON AGENCY
ARLINGTON HALL STATION
ARLINGM 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than In connection with a definitely related
government procurement operation, the U. S.
Government thereby Incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or In any way
supplied the said drawings, specifications, or other
data is not to be regarded by Implication or other-
wise as In any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented Invention that may In any way be related
thereto.

CM

oc

o

1. -1

O

■3

(,% I' z>

XEROX

D1.82-0141

BOEINGrl?iÄ=r, RIES

Procedures For Generating Normal

Random Variables, II

G. Marsaglia

Mathematics Research

„ ^
l;k ■('

,.., ¥k '

November 1961

AST;

XflKOfl

■nl

01-82-0141

PR0CE0URES FOR GENERATING NORMAL RANDOM VARIABLES, II

by

G. Marsaglia

Mathematical Note No. 24.3

Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

November 1961

»*

1. Introduction

A method for generating a normal random variable in terms of uniform

random variables will be described. The method is based on representing

a density function as a mixture of simpler densities, as outlined in [l].

It is quite fast and requires little storage (60 constants). It is not

quite as fast as the method of [2], but it is simpler, with less chance

for prospective users being set adrift in a sea of details.

We will fashion the procedure with use on a computer with numbers

having 35 binary digits (bits) in mind. The details may be modified for

numbers of different lengths or for decimal computers.

The normal random variable x is generated in terms of Independent

uniform random variables u1,u„,... . Roughly, the procedure is this:

we put x = -iki with frequency 35%; x = -g- + -gu, 2A%; x = 1 + jga, 13%;

x = 3/2 + -gu, 5%', and x = 2 + -gu, with frequency about 1%. Thus

with probability about .8 we put x = a + -gu, the first 9 bits of u,

being used to choose a from among C, l/2, 1, 3/2, 2 and the

remaining 26 bits of u-, used to form -gu.

Of the remaining 20% we use the modified rejection technique given

in [3] with frequency 19% and the other 1% is devoted to the tall. The

modified rejection technique Is applied to one of regions 6-10 above

the rectangles in Fig. 1, while rectangles 1-5 provide the representations

x = 0 + -gu, -J- + -gu, etc. We use the polar representation of a random

normal point to dispose of the tail.

•
.

Fig. 1

The procedure has, in theory, unlimited accuracy; in practice, its

accuracy is limited by the capabilities of the machine in single

precision floating point.

f(x) = ~ e~^, x > 0.

2. The Rectangles

Let f be the absolute normal density,

2
 e ^

We generate x with density f, attaching a random + at some convenient

point in the program. We write f as a mixture of 11 densities:

11
f(x) = 2 P.g. (x).

i=l i"i

Fig. 1 shows how the terms in the mixture are stacked to form f.

The 5 rectangles provide the fast part of the program; g., , ... ,g^

being rectangles with base -g-, an x with such a density may be found

by putting x = a + -gu. For example, region 1 of Fig. 1 provides the

representation x = 0 + -gu, and this should be used with frequency equal

to the area of region 1, p = .352065326764.299. But it is wasteful to

test u-, < P-i in its full form, as this will require all 35 bits of u, ;

much better is to use only, say, 9 bits of u, to test u, < p, where

p. is the nearest we can get to p.. using 9 bits, p. = 180/512 = .3515625,

then we may use the last 26 bits of u, to form -^u and put x = -Ju.

Later, with probability p.. - P-, » we will put x = gU«, using a

completely new uniform number u«. We then will get by most of the time

with a single uniform number un . Each of the probabilities P-, »P^tPiiP, tVr

AÖ-
-*>2

Fig. 2

is broken up in this way; the numerical values appear in the steps of

the program and in the summary of constants.

3. The "Nearly Linear" Method

We illustrate the nearly linear method with region 9 of Pig. 1.

It represents the term Pqgq in the mixture, so we must, with

probability p_ = .034-123172128170, generate a random variable with

density g,,. This density is drawn in Fig. 2. Our method is to enclose

the area under g in the trapezoid ADEF. The slope of CG and DE

is -8. We choose a point (z,y) uniformly from the trapezoid and set

x = z if y < g(z), but choose a new point (z,y) if not. We test to

see if the point (z,y) is in triangle ACG (y < const. -8z), hoping to

avoid testing y < g(z). If that test is necessary, we take advantage

of the exponential content of g, writing

i2 ,-9/8 1/2
g(z) = _JL> [e-^ . e-2] = 2e^[e-i<z^9A)_e-7/8]#

P9 ^2TT p9 ^2TT

Then the test y < g(z) hinges on whether this infinite sura is positive

or negative:

t2 t-" t^
^ -s + * -2T+3T"ZT+ "••

with r = p9s/^72 e9'8, s = 1 - e"7/8, t = -^z + 3/2) (z - 3/2),

0 < t < 7/8. This is an alternating series that converges rather

quickly, and its sum is negative if and only if two successive partial

sums are negative; positive if and only if two successive partial sums

are positive. We should average only a few multiplications in order to

decide y < g(z) with "unlimited" accuracy. Another advantage Is that

the structure of the test for gQ is the same as that for the other g's,

only r, s, and t changing.

The point (z,y) in the trapezoid of Fig. 2 may be produced quite

fast, putting

z = ■§-min(up,u_) -♦- <-5,

y = d + 4max(u2,u.J

(choosing from triangle BDE) with probability rrr and putting

z = iu 2'

y = du.

(choosing from ABEF) with probability
2+d *

If d is small we will

avoid conventional multiplication most of the time, and by properly

choosing d we will need only a few bits of u, to choose between the

two methods for generating (2,y), so that the remaining bits of u, may

be used to form u_ and u_.

For example, pQ = .03-412317212.8170. We let p0 = 17/512 = .033203125,
7 7

then generate x with density gq with probability pq. In the course

of the program, the test for this contingency is ^r— < u-, < rr^— .

2 IZ,
If u, is in this range, then by making -ZTT = zf: , we may test

u-, < ^—rTp—> keeping the last 26 bits of u, available for forming

u? and u_. This makes d = 3/7 = .-42857... whereas the smallest

possible value for d is d = .4-27... . The loss is small, and the gain

from not having to generate new tu and u_ is great. We must generate x

f.

from density gQ with probability PQ - p0 later on, using new u0
7 7 7 ~ *-

and u_, b\

negligible.

and u-, but the average time loss for this compensating step is

4.. The Tail

We need x conditioned by |x| > 2.5. Consider the plane of points

(x, jX) with x, and x5 independent standard normal.

► x,

We want a point (x. ,x_) outside the square, then one of the coordinates

will serve as x. We use the polar representation (p,6) to choose points

outside the circle until we get one outside the square, then change to

rectangular coordinates (x ,x).

The exterior of the circle has measure .04-4., the exterior of the

square, .025. The ratio of the two is about .57 so that 57% of the time

a point lying outside the circle will lie outside the square. If (x.^ »xp)

lies outside the square, only once in 150 times will both Ix, | and |x9|

be > 2.5, so it probably isn't worth the trouble to store the extra one

8

for future use, as this would mean that each time the tall was encountered

in the program, the request for a possible stored value of x would almost

always be denied.

It is elementary to verify that putting

^
= v.

X2 = v2

(2$ A + 2w\
2 x 2 ;'

Vl + V2 /
i

(?5A + 2w\ ^
Vl + V2 / '

with w exponential and ^,V- uniform on (-1,1) and conditioned by

2 2 v, + v. < i, will provide a point (x^.x.) Outside the circle with the

appropriate distribution.

5. Outline of a Program

We give a series of steps outlining a program based on the above

procedure, assuming we have a subroutine which, when called for, will

generate a new uniform number u in terms of the current uj for

k 35
example, by putting: new u = 2 u +u + 1 (mod 2), as suggested by

Rotenberg [5].

1. If ISO
0 < u.. < rrj put x = -^u, with -g-u formed from bits 10-35 of u, .

•g- + -gu, vdth ^u formed from bits 10-35 of

3. If IJI^ < HI put x = 1 + i

, --. 180 y y 303 1,1
* If 512 ^ ui < 512 P"* x = i + "5

ur

V

■gu, with -gu formed from bits 10-35 of u, .

U- If HI < ^ < HI put x = 1.5 + M with ^u formed from bits 10-35 of

5. If ||| < ^ < |2| put x = 2.0 + ^u, with ^u formed from bits 10-35 of u^^.

fg<Ui<g| ^ J=6,
/QQ
|j|- pit j = 10. Test

z = a. + -g- mln(ii2,u_) and y = d . +4- max (u„,u_); if

if ^22 <u <^9
512 ^ ul ^ 512

and

u, < q., if yes, form

no, form

z = a^. + ib2, y = d.u^. In

bits 10-22 and u

either case, u- is formed from

put

u fi-om bits 23-35 of u,. [K] If y < e^ -

x =

. - 8z,

zj if not, let t = -^z + a.)(z - a.) and form terms of
J J

the sequence

t2

rJy-SJ' rJy-SJ+t' rjy-SJ+t-
t ^4- t f t^
21' rjy-Sj+t-2T + 3T'

Lve until two successive terms have the same sign. If two successii

terms are negative, put x = z, if two successive terms are posi-

tive, go to H.

7. If HI < ^ < .980619788956091 choose i from 1,2,...,5 wi

probability p. - p. , generate a uniform number u, and put

x - -g{i-l) + ^u^.

th

9.

H.

10

8. If .980619788956091 1 u, < .987580669348-U8 choose j from among

6,7,8,9,10 with probability p. - p. and go to H.
J J

If .9875806693^8U8 < ^ < 1, form

2 + 2) >
'1 2

= v /25/4 + 2vA v2 V 2 ^ 2 i '

where w has the exponential distribution and v., ,v? are uniform

on (-1,1), conditioned by v, + v? < 1. Test Ix^ | > 2,5', if

yes, put x V If no, test |x„| > 2.5; if yes, put x = x?;

if no, generate a new pair x. ,x and try again.

Generate a new uniform number u. Test u < b., if yes, let

z = a. + g- inin(u2,uj , y d. + ^ max (u_,u_); if no, let

z = a. + pU„, y = d,u_ where u„ and u0 are formed from the
J ^ 2' ^ j 3 2 3

first and last parts of a new uniform number generated from u.

Now go to [K] of step 6.

6. Remarks

With probability • rr^-- .79 we will use the representation

x = a + -gu of steps 1-5, and this is the principal reason for a fast

95 m program. However, even when, with frequency TVö
or about 19%, we

require step 6, the time loss is not crushing, for most of the time we

will get through step 6 without using a single conventional multipli-

cation and will require only one uniform number u..

1—

11

It is in trying to avoid the use of more than one uniform number

in step 6 that we make our only compromise with accuracy, for we use

only 13 bits to represent numbers on an interval of length -g-, A

program based on the outline above can be described as being as accurate

as the single precision capacity of the machine, except that with

probability ;r the value of x may differ by about 2~ from the

value that should be delivered. Any nuts wanting accuracy greater than

this can call up a new uniform number at that point, with a loss of

15 perhaps 15 cycles, or a net loss of about -?- - 3 cycles in the average

running time of the program.

Step 7 corrects for our inability to handle regions 1 to 5 using

only 9 bits, and step 8 does the same for regions 6 to 10. Step 9

provides an x from the tail. Note that in step 9 a signed value of

x is returned, whereas in the other steps a positive x is returned

and a random + must be assigned at some convenient point. The method

for doing this is not critical in steps 7 or 8, but in the first 6 steps,

particularly steps 1-5, the method should be chosen so that time is not

wasted in this assignment.

Step 9 requires an exponential variable w. The ease with which

w can be produced is probably more important than saving time here,

since step 9 provides only one x in a hundred. If a logarithm sub-

routine is available, w = - In u will serve, or the method in [4J

may be used.

•

12

SUMMARY OF CONSTANTS

i

6
7
8
9
10

0J aj ej qj Pj aj

12/15 1/2 3.0380 ^89/512 15/512=.029296875 0
28/29 1/lA 7.8099 4-32/512 29/512=. 0566^0625 l/2
25/27 4/25 11.930 458/512 27/512=. 05273-^375 1
14-/17 3/7 15.850 ^74-/512 17/512=. 033203125 3/2
5/7 4-/3 19.780 497/512 7/512=. 013671875 2

6
7

10

.030859595783727

.057793845069917

.054178509659306

.034123172128170

.015552632751237

P.-P.

.001562720783727

.001153220069917

.001444134659306

.000920047128170

.001880757751237

J'

.038676767667587

.082078297231197

.111952612794322

.131731800427316

.144029953116673

s .
J

.117503097415405

.312710721209028

.464738571481000

.583137980321492

.675347532641650

1 .352065326764299
2 .241970724519143
3 .129517595665892
4 .053990966513188
5 .017528300493569

180/512=.3515625
123/512=.240234375
66/512=.12890625
27/512=.052734375
8/512=.015625

pi-pi

.000502826764299

.001736349519143

.000611345665892

.001256591513188

.001903300493569

13

REFERENCES

[l] G. Marsaglia, "Expressing a Random Variable in Terms of Uniform

Random Variables", Annals of Mathematical Statistics, vol. 32,

no. 3, Sept. 1961, pp. 894-S98.

[2] G. Marsaglia and M. D. MacLaren, "A Program for Generating Normal

Random Variables", to appear.

[3] G. Marsaglia, "Remark on Generating a Random Variable Having a

Nearly Linear Density Function", Boeing. Scientific Research

Laboratories Document Dl-82-0107, May 1961.

[4.] G. Marsaglia, "Generating Exponential Random Variables", Annals of

Mathematical Statistics, vol. 32, no. 3, Sept. 1961, pp. 899-900.

r5] A. Rotenberg, "A New Pseudo-Random Generator", Journal of the

Association for Computing Machinery, vol. 7, no. 1, Jan. I960,

pp. 75-77.

